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Structural coloration, the production of color with nanoscale structures,
has steadily gained attention owing to numerous advantages such as
environmental friendliness, long-term durability, and vivid coloration
compared to conventional chemical pigments.1–3 In addition, recent de-
velopments in the field of nanofabrication have led to an increase in
research on structural coloration with sophisticated artificial materials,
known as metamaterials. Furthermore, various underlying physical
mechanisms have been investigated such as Mie-scattering from high-
index dielectric particles, localized surface plasmon resonances from
metallic structures, and Fabry–Pérot (F-P) resonances through the use
of metal-dielectric-metal multilayers. Consequently, structural colora-
tion has attained an unprecedented pixel resolution of 10,000 pixels per
inch (ppi) and full coverage of the standard RGB gamut.4–8

However, an inherent trade-off between high spatial resolution and
fabrication cost prevents structural coloration from being commercially
viable. For example, subwavelength dielectric structures require feature
sizes in the order of 100s of nanometers,8 which inevitably requires
time-consuming electron-beam lithography for fabrication. Similarly,
other design approaches (i.e., localized surface plasmons and F-P res-
onances) suffer from a high production cost when high-density artificial
structure arrays are used in the design. Nanoimprint lithography has
been developed to ease such fabrication issues, and has recently been
applied to manufacture 3D F-P structures by replicating molds prepared
with grayscale electron-beam lithography. Nevertheless, their sample
sizes remain limited to the submillimeter scale.9

Reporting in Advanced Photonics Nexus,10 a group led by Prof.
Guixin Li of the Southern University of Science and Technology of
China, solved this trade-off between size and resolution by using com-
mercial direct laser writing to produce structural coloration using meta-
materials made up of a semitransparent silver mirror and grayscale
photoresist (PR) as the cavity of F-P structures. The thickness of
the PR is controlled by grayscale exposure of direct laser writing at
a recording speed of ∼104 um2 s−1. Moreover, with this fabrication
method, they achieved pixel sizes of 5 μm × 5 μm with suppressed
crosstalk between the colors. Furthermore, the maximum transmission
efficiencies of the F-P structures approach 50%, which is comparable
to those of conventional color filters. The authors finally presented
centimeter-scale color printing with a 255-grayscale cavity thickness
level demonstrating a resolution of 1200 ppi [Fig. 1(a)]. The 255-level
height control enabled full coverage of the RGB gamut, which was
verified using a light interferometer [Fig. 1(b)].

The authors further claimed that the pixel resolution could be im-
proved by increasing the numerical aperture of the objective lenses in
the direct laser writing system. Clearly, considering their high transmis-
sion efficiencies and low production cost, the proposed F-P structures

could have a significant impact as an alternative to commercial color
filters. Furthermore, the results of this study can be applied to numerous
applications using recently developed advanced materials for nano-
photonic devices. For example, a humidity-sensitive photoresist was
recently proposed for structural coloration11–13 that can be implanted
into the cavity of F-P structures by modifying the chemical reactor of
the resin to be compatible with direct laser writing. Consequently, this
work not only suggests the possibility of structural coloration for di-
verse applications at visible frequencies but also highlights the impor-
tance of a novel approach to 3D fabrication methods using a direct laser
writing process. We expect that their insightful large-area 3D fabrica-
tion approach will inspire other scholars involved in the commerciali-
zation of metalenses and metaholograms.14–17
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Fig. 1 Demonstration of centimeter-scale structural coloration.
(a) A captured image under a halogen lamp. Scale bar: 1 mm.
(b) and (c) are the thickness scanning images of region 1 (R1) and
region 2 (R2), respectively, using a light interferometer. Scale bars:
200 μm.
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